A new multigrid formulation for high order finite difference methods on summation-by-parts form
نویسندگان
چکیده
منابع مشابه
A new multigrid formulation for high order finite difference methods on summation-by-parts form
Multigrid schemes for high order finite difference methods on summationby-parts form are studied by comparing the effect of different interpolation operators. By using the standard linear prolongation and restriction operators, the Galerkin condition leads to inaccurate coarse grid discretizations. In this paper, an alternative class of interpolation operators that bypass this issue and preserv...
متن کاملHigh Order Finite Difference Operators with the Summation by Parts Property Based on Drp Schemes
Strictly stable high order finite difference methods based on Tam and Webb’s dispersion relation preserving schemes have been constructed. The methods have been implemented for a 1D hyperbolic test problem, and the theoretical order of accuracy is observed.
متن کاملOn the Order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-parts Form
In this paper we generalise results regarding the order of accuracy of finite difference operators on Summation-By-Parts (SBP) form, previously known to hold on uniform grids, to grids with arbitrary point distributions near domain boundaries. We give a definite proof that the order of accuracy in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary ste...
متن کاملHigh order summation-by-parts methods in time and space
This thesis develops the methodology for solving initial boundary value problems with the use of summation-by-parts discretizations. The combination of high orders of accuracy and a systematic approach to construct provably stable boundary and interface procedures makes this methodology especially suitable for scientific computations with high demands on efficiency and robustness. Most classes ...
متن کاملSuperconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations
Diagonal-norm summation-by-parts (SBP) operators can be used to construct timestable high-order accurate finite-difference schemes. However, to achieve both stability and accuracy, these operators must use s-order accurate boundary closures when the interior scheme is 2s-order accurate. The boundary closure limits the solution to (s + 1)-order global accuracy. Despite this bound on solution acc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2018
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.01.011